In our last week, we introduce the basics of multivariable analysis.
Definition:
A
partial derivative of

with respect to the variable

is the limit
![Rendered by QuickLaTeX.com \[f_{x_m}(a_1,a_2,...,a_n) = \lim_{h \to 0} \frac{f(a_1,...,a_m+h,...,a_n)-f(a_1,...,a_n)}{h},\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-b8593247efdb239cafb56ead920ba093_l3.png)
if the limit exists.
Example:
The function

Recall that for a multivariable function

one defines the gradient

In similar fashion, for a multivariable function

with multiple outputs, define the
(total) derivative of

to be
![Rendered by QuickLaTeX.com \[Df(x) = \begin{bmatrix} \nabla f_1 \\ \nabla f_2 \\ ... \\ \nabla f_m \\ \end{bmatrix}=\begin{bmatrix} (f_1)_{x_1}(x) & (f_1)_{x_2}(x) & ... & (f_1)_{x_n}(x) \\ (f_2)_{x_1}(x) & ... & ... & (f_2)_{x_n}(x) \\ ... & ... & ... & ... \\ (f_m)_{x_1}(x) & (f_m)_{x_2}(x) & ... & (f_m)_{x_n}(x) \\ \end{bmatrix}\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-b5a4a1fc16895f21c5113094bd5a45c6_l3.png)
Definition:

is
differentiable at 
if there exists an

matrix

such that
![Rendered by QuickLaTeX.com \[f(x_0+h)=f(x) + Df(x_0) h+r(h),\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-90d426fb63873a413ef610c514edf044_l3.png)
where
![Rendered by QuickLaTeX.com \[\lim_{\|h\|\to 0} \frac{r(h)}{\|h\|}=0.\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-6f5c08fc40912574dd02cd9e5891051c_l3.png)