Week 10: Introduction to Analysis in Several Variables

In our last week, we introduce the basics of multivariable analysis.
Definition:
A partial derivative of f: \mathbb{R}^n \to \mathbb{R} with respect to the variable x_n is the limit

    \[f_{x_m}(a_1,a_2,...,a_n) = \lim_{h \to 0} \frac{f(a_1,...,a_m+h,...,a_n)-f(a_1,...,a_n)}{h},\]

if the limit exists.
Example:
The function \frac{x^2+y^2}{xy}. Recall that for a multivariable function f: \mathbb{R}^n \to \mathbb{R} one defines the gradient \nabla f = (f_{x_1},..,.f_{x_n}). In similar fashion, for a multivariable function f=(f_1,...,f_m):\mathbb{R}^n \to \mathbb{R}^m with multiple outputs, define the (total) derivative of f to be

    \[Df(x) = \begin{bmatrix}         \nabla f_1 \\         \nabla f_2 \\         ... \\         \nabla f_m \\         \end{bmatrix}=\begin{bmatrix}             (f_1)_{x_1}(x) & (f_1)_{x_2}(x) & ... & (f_1)_{x_n}(x) \\             (f_2)_{x_1}(x) & ... & ... & (f_2)_{x_n}(x) \\             ... & ... & ... & ... \\             (f_m)_{x_1}(x) & (f_m)_{x_2}(x) & ... & (f_m)_{x_n}(x) \\         \end{bmatrix}\]

Definition:
f: \mathbb{R}^n \to \mathbb{R}^m is differentiable at x_0 \in \mathbb{R}^n if there exists an m \times n matrix Df(x_0) such that

    \[f(x_0+h)=f(x) + Df(x_0) h+r(h),\]

where

    \[\lim_{\|h\|\to 0} \frac{r(h)}{\|h\|}=0.\]