The following appears as Problem 8 on the UCLA Fall 2014 Analysis Qual:
Problem 8. Let
be an entire function. Show that
![]()
![]()
Solution: Suppose
for some constants
Then, by Cauchy’s estimates,
![]()
![]()
![Rendered by QuickLaTeX.com \[f(z) = \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!} z^n,\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-a0f9acd6013784b02fc3f148712e3f86_l3.png)
![Rendered by QuickLaTeX.com \[|f(z)| \leq \sum_{n=0}^\infty \frac{|f^{(n)}(0)|}{n!} |z|^n \leq M \sum_{n=0}^\infty \frac{1}{n!} M^n|z|^n = M e^{M|z|},\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-6568f4d5183af6c143d661a9a3cce459_l3.png)
The following appears as Problem 8 on the UCLA Fall 2014 Analysis Qual:
Problem 8. Let
be an entire function. Show that
![]()
![]()
Solution: Suppose
for some constants
Then, by Cauchy’s estimates,
![]()
![]()
![Rendered by QuickLaTeX.com \[f(z) = \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!} z^n,\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-a0f9acd6013784b02fc3f148712e3f86_l3.png)
![Rendered by QuickLaTeX.com \[|f(z)| \leq \sum_{n=0}^\infty \frac{|f^{(n)}(0)|}{n!} |z|^n \leq M \sum_{n=0}^\infty \frac{1}{n!} M^n|z|^n = M e^{M|z|},\]](https://www.stepanmalkov.com/wp-content/ql-cache/quicklatex.com-6568f4d5183af6c143d661a9a3cce459_l3.png)