Analysis Problem of the Day 85

Today’s problem appeared as Problem 2 on the UCLA Spring 2018 Analysis Qual:

Problem 2. Let f \in L^2(\mathbb{R}) and for h>0 define

    \[Q(f,h):= \int_\mathbb{R} \frac{2f(x)-f(x+h)-f(x-h)}{h^2} f(x) dx.\]

a) Show that Q(f,h) \geq 0 for all f \in L^2(\mathbb{R}) and all h>0.

b) Show that E:=\{f \in L^2(\mathbb{R}): \limsup_{h \to 0} Q(f,h) \leq 1\} is closed in L^2(\mathbb{R}).


Solution: a) Note that by Cauchy-Schwarz, \left|\int_\mathbb{R} f(x)f(x+h)dx \right| \leq  \|f\|_2\|f\|_2 = \int |f(x)|^2 dx, and similarly \left|\int_\mathbb{R} f(x)f(x-h)dx\right| \leq \int |f(x)|^2 dx. Factoring \frac{1}{h^2} out of Q(f,h) and using the above estimates yields

    \[\frac{1}{h^2} \int_\mathbb{R} f(x+h)f(x)+f(x-h)f(x) dx \leq \frac{1}{h^2} \int_\mathbb{R} 2f(x)^2 dx,\]

and rearranging yields the desired inequality Q(f,h) \geq 0.

b) We transform the integrand of Q(f,h) to the Fourier side, motivated by the fact that we are working over L^2(\mathbb{R}). On the Fourier side, since \langle \widehat{f},\widehat{g}\rangle = \langle f,g\rangle, the integral becomes

    \[Q(f,h)=\int_{\mathbb{R}} \frac{2-e^{i\xi h}-e^{-i\xi h}}{h^2} \widehat{f}^2(\xi) d\xi= \int_\mathbb{R} \frac{2-2\cos(\xi h)}{h^2} \widehat{f}^2(\xi)d\xi.\]

Now, one can easily check that |\frac{2-2\cos(\xi h)}{(\xi h)^2}| \leq 1, so that |\frac{2-2\cos(\xi h)}{h^2}| \leq |\xi|^2 is uniformly bounded as h \to 0. Thus, if \|g-f\|_2<\epsilon, by Plancherel’s theorem, \|\widehat{g}-\widehat{f}\|_2<\epsilon, so that

    \[|Q(g,h)-Q(f,h)| =\left|\int_\mathbb{R} \frac{2-2\cos(\xi h)}{h^2} (\widehat{g}^2-\widehat{f}^2)d\xi\right| \leq \int_{|\xi|<\epsilon} |\xi|^2 |\widehat{g}^2-\widehat{f}^2|d\xi\]

    \[+ \left|\int_{|\xi| \geq \epsilon} \frac{2-2\cos(\xi h)}{h^2} (\widehat{g}^2-\widehat{f}^2)d\xi\right| < 2C \epsilon\]

uniformly in h by applying Cauchy-Schwarz with \widehat{g}-\widehat{f} in both terms. Thus, if \|g-f\|_2<\epsilon and Q(f,h_n)\geq 1+5C\epsilon for h_n \to 0, then Q(g,h_n) \geq 1+C\epsilon for all n for h_n \to 0, implying that E^c is open and therefore showing that E is closed.

Leave a Reply

Your email address will not be published. Required fields are marked *