Analysis Problem of the Day 14

Today’s problem comes as Problem 5 on Stanford’s Spring 2019 Analysis Qual:

Problem 5: Recall that we define the Sobolev space H^s(\mathbb{R}) for s \geq 0 as the subspace of L^2(\mathbb{R}) with norm \|u\|_{H^s} = \|\langle \xi \rangle^s \widehat{u}(\xi)\|_{L^2}, where \langle \xi \rangle := (1+|\xi|^2)^{\frac12} is the Japanese bracket and \widehat{u} is the Fourier transform of u \in L^2.

a. Show that H^s(\mathbb{R}) \hookrightarrow L^\infty(\mathbb{R}) for s>\frac12 and that the inclusion map is continuous.

b. Show that for u,v \in H^1(\mathbb{R}), uv \in H^1(\mathbb{R}) and

    \[\|uv\|_{H^1} \leq C\|u\|_{H^1}\|v\|_{H^1}\]

for some constant C>0. (Hint: show that \|u\|_{H^1} = (\|u\|_2^2+\|u'\|_2^2)^{\frac12}.)


Solution: Throughout, we will use \|u\|_A \lesssim \|u\|_B to denote \|u\|_A \leq C \|u\|_B for some constant C>0. Additionally, we will use the fact that the Fourier transform is an isometry on L^2, i.e. \|u\|_2 = \|\widehat{u}\|_2 for u \in L^2.

a. For s>\frac12,

    \[\|u\|_{L^\infty} \lesssim \|\widehat{u}\|_{L^1} \lesssim \|\widehat{u} \langle \xi \rangle^s \langle \xi \rangle^{-s}\|_{L^1} \lesssim \|\widehat{u} \langle \xi \rangle^s\|_{L^2} \|\langle \xi \rangle^{-s}\|_{L^2} \lesssim \|u\|_{H^s},\]

where the first inequality follows from the fact that the Fourier transform (and its inverse) are continuous as maps \mathcal{F},\mathcal{F}^{-1}: L^1 \to L^\infty, the middle inequality is by Holder, and the last inequality follows from the definition of the H^s norm and the fact that \langle \xi \rangle^{-2s} is integrable on \mathbb{R} for s>\frac12.

Remark: Note that \langle \xi \rangle^{-2s} is integrable on \mathbb{R}^n for s>\frac{n}{2}. Thus, the exact same argument shows that for s>\frac{n}{2}, H^s(\mathbb{R}^n) \hookrightarrow L^\infty(\mathbb{R}^n). This is a reflection of a much more general set of theorems called the Sobolev embedding theorems, which state that H^{s}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n) for \frac{1}{p} = \frac12 - \frac{s}{n}.

b. We first show the hint by noting that

    \[\|u\|_{H^1}^2 = \int \langle \xi \rangle^2 \widehat{u}^2 d\xi = \int \widehat{u}^2 d\xi + \int |-i\xi \widehat{u}|^2 d\xi = \|u\|_{L^2}^2+\|u'\|_{L^2}^2,\]

where u' := \mathcal{F}^{-1}(-i\xi \widehat{u}) \in L^2. Thus, the problem reduces to showing that

    \[\|uv\|^2_2+\|(uv)'\|_2^2 \lesssim (\|u\|_2^2+\|u'\|_2^2)(\|v\|_2^2+\|v'\|_2^2).\]

The first term is easily bounded by \|u\|_2^2 \|v\|_2^2 as a consequence of Holder’s inequality, and for the second term, we use the product rule (uv)'=u'v + uv' to bound \|(uv)'\|_2^2 \leq \|u'\|_2^2\|v\|_2^2 + \|u\|_2^2\|v'\|_2^2. Thus, \|uv\|_{H^1} \lesssim \|u\|_{H^1} \|v\|_{H^1}.

Remark: The Leibniz rule is valid for H^1 functions since it is valid on C_c^\infty, which is dense in H^1 in the H^1 norm (by standard use of mollifiers).

Leave a Reply

Your email address will not be published. Required fields are marked *