Analysis Problem of the Day 1

The following appears as Problem 8 on the UCLA Fall 2014 Analysis Qual:

Problem 8. Let f: \mathbb{C} \to \mathbb{C} be an entire function. Show that

    \[|f(z)| \leq C e^{a|z|}, \quad z \in \mathbb{C},\]

for some constants C and a if and only if

    \[|f^{(n)}(0)| \leq M^{n+1}, \quad n=0,1,...\]

for some constant M.


Solution: Suppose |f(z)| \leq C e^{a|z|} for some constants C,a>0. Then, by Cauchy’s estimates,

    \[|f^{n}(0)| \leq \frac{n! \sup_{|z| \leq R} |f(z)|}{R^n} \leq \frac{n! C e^{aR}}{R^n}\]

for all R>0. Setting R=n and using the crude bound n! \leq n^n, we get that

    \[|f^{(n)}(0)| \leq C e^{an} = C (e^a)^n,\]

so setting M=\max(C,a) yields the desired claim. Conversely, we use the locally uniformly convergent power series

    \[f(z) = \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!} z^n,\]

which yields

    \[|f(z)| \leq \sum_{n=0}^\infty \frac{|f^{(n)}(0)|}{n!} |z|^n \leq M \sum_{n=0}^\infty \frac{1}{n!} M^n|z|^n = M e^{M|z|},\]

so C=a=M suffices.

Leave a Reply

Your email address will not be published. Required fields are marked *