Worksheet 7

MATH 33A

- 1. (a) Find the eigenvectors and eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
 - (b) Compute det(A), tr(A). What do you notice about how these are related to the eigenvalues of A?
- 2. Diagonalize the above matrix. Compute A^{100} . Find det (A^{100}) , tr (A^{100}) .
- 3. Find the eigenvalues of the 100×100 matrix

$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

- 4. Show tr(AB) = tr(BA) for any two $n \times n$ matrices A, B.
- 5. Let $A = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$. Is it possible to find a basis for \mathbb{R}^2 consisting of eigenvectors of A? If so, compute such an eigenbasis.