Worksheet 4

MATH 33A

- 1. Let W be the subspace in \mathbb{R}^3 spanned by the plane x + 2y + z = 0. Find dim W and find a basis for W. How many elements are in the basis?
- 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 0 \end{bmatrix}$. Find $\operatorname{im}(T)$, $\operatorname{ker}(T)$, $\operatorname{rank}(A)$. Are the vectors that form the columns of A linearly independent? Do they span \mathbb{R}^3 ?
- 3. Let $X = \{e_1, ..., e_n\}$ be a basis for \mathbb{R}^n and $X = \{w_1, ..., w_n\}$ be another basis. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Show that $T_B = PT_AP^{-1}$, where P is the matrix whose columns are $w_1, ..., w_n$.
- 4. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by im(A), where

$$A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ -2 & 3 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ 3 & 2 & -2 & 3 \end{bmatrix}.$$